RL-0603-C Series Current Sensor Resistor (Lead / Halogen Free)

Features / Applications:

- Power rating is up to 1/10W
- Low TCR current sensor
- Resistors are ideal for all types of current sensing
- Metal film construction; Excellent long-term stability
- Moisture sensitivity level: MSL 1
- RoHS compliant

Electrical Specifications:

Characteristics ¹	Fea	ture
Power Rating ²	1/10 W	
Resistance Value(mΩ)	50 to 69	70 to 1000
Temperature Coefficient of Resistance(ppm/°C)	0 to 500	± 200
Operation Temperature Range	-55°C to +125°C	
Maximum Working Voltage (V)	(P*R) ^{1/2}	

Note:

- 1. For detailed information see table on page 3
- 2. For sensors operated at ambient temperature in excess of 70°C, the maximum load shall be derated in accordance with the following curve.

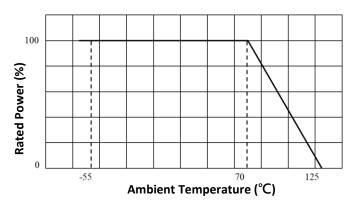
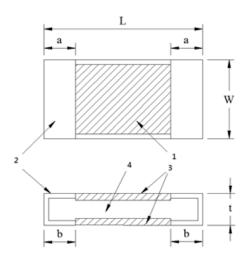



Figure 1. : Power Temperature Derating Curve

DOCUMENT : SRFC-NH PAGE : 1 REVISION : A4

Outline Drawing:

(1) Resistive element(Under protection film)

(2) Electrode: Solder Sn (on Cu)

(3) Protection film: Epoxy resin

(4) Substrate: Alumina

Resistance Range(mΩ)	L	w	а	b	t
50 to 900	0.60 0.02	0.31 ± 0.04	0.14 ± 0.06	0.14 ± 0.06	0.27 ± 0.04
1000	0.60 ± 0.03				0.24 ± 0.04

(Unit:mm)

Type Designation:

(1) (2) (3)

(4)

(5)

Note:

(1) Series No.

(2) Size

(3) Power Rating: C = 1/10W

(4) Resistance value : $0R5m = 0.5m\Omega$; $R002 = 2m\Omega$; $R010 = 10m\Omega$

(5) Tolerance: ±1%(F), ±2%(G), ±5%(J)

Available standard resistance values:

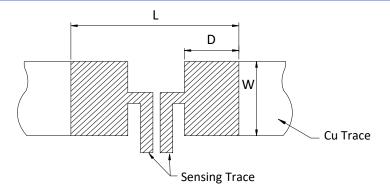
	Tolerance		
Resistance Values	±1.0%	±2.0%	±5.0%
R050	✓	✓	✓
R068	✓	✓	✓
R070	✓	✓	✓
R095	✓	✓	✓
R100	✓	✓	✓
R125	✓	✓	✓
R150	✓	✓	✓
R175	✓	✓	✓
R200	✓	✓	✓
R225	✓	✓	✓
R275	✓	✓	✓
R300	✓	✓	✓
R325	✓	✓	✓
R350	✓	✓	✓
R375	✓	✓	✓
R400	✓	✓	✓
R425	✓	✓	✓
R475	✓	✓	✓
R500	✓	✓	✓
1R00	✓	✓	✓

✓ = available

Further values and tolerances on request.

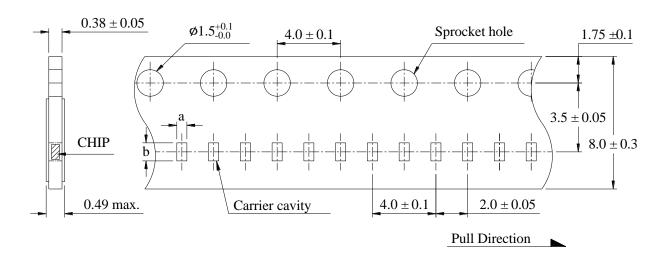
DOCUMENT : SRFC-NH PAGE : 3 REVISION : A4

Reliability Performance:


Test Item	Condition of Test	Requirements
Short Time Overload	2.5 x Rated power for 5 seconds Refer to JIS C 5201-1 4.13	ΔR: ± 0.5%
Thermal Cycling	-55 to 125℃ 100 cycles, 15 min at each extreme condition Refer to JIS C 5201-1 4.19	ΔR: ±1.0%
Low Temperature Storage	Kept at -55℃, 1000 hours Refer to JIS C 5201-1 4.23.4	ΔR: ±1.0%
Resistance to Soldering Heat	Dipped into solder at $260 \pm 5^{\circ}$ C for 10 ± 1 seconds Refer to JIS C 5201-1 4.18	ΔR: ± 0.5%
Load Life	Rated voltage for 1.5hours followed by a pause 0.5hour at 70 ± 3℃ Cycle repeated 1000 hours Refer to JIS C 5201-1 4.25	ΔR: ±1.0%
Damp Heat with Load	40 ± 2°C with relative humidity 90% to 95%. D.C. rated voltage for 1.5 hours ON and 30 minutes OFF. Cycle repeated 1,000 hours Refer to JIS C 5201-1 4.24	ΔR: ±1.0%
High Temperature Exposure	Kept at 125℃ for 1000 hours Refer to JIS C 5201-1 4.23.2	ΔR: ±1.0%
Solderability	Temperature of Solder : $245 \pm 5^{\circ}$ C Immersion Duration : 3 ± 0.5 second Refer to JIS C 5201-1 4.17	Uniform coating of solder cover minimum of 95% surface being immersed
Mechanical Shock	100 G's for 6milliseconds. 5 pulses Refer to JIS C 5201-1 4.21	ΔR: ±0.5%
Substrate Bending	Glass-Epoxy board thickness: 1.6mm Bending width: 2mm Between the fulcrums: 90mm Refer to JIS C 5201-1 4.33	ΔR: ±0.5%

Note: Measurement at 24±4 hours after test conclusion for all reliability tests-parts.

DOCUMENT : SRFC-NH PAGE : 4 REVISION : A4

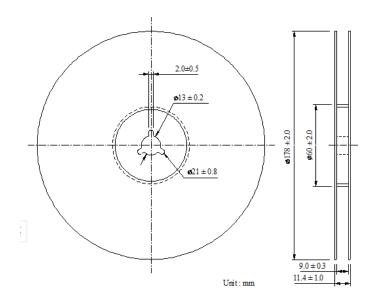

Recommend Solder Pad Dimensions:

Dimensions (mm)	w	L	D
50 to 1000 mΩ	0.3 to 0.7	1.00	0.35

Packaging:

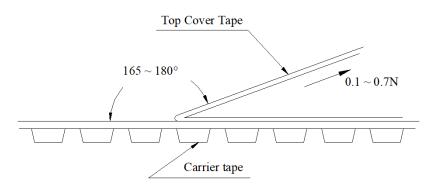
Tape packaging dimensions:

*Pre-emptied holes: 150 holes (or 30cm) or more.


Code letter	a	b	Unit : mm
Dimension	0.40 ± 0.05	0.7 ± 0.05	

DOCUMENT : SRFC-NH

PAGE: 5
REVISION: A4


Reel dimensions:

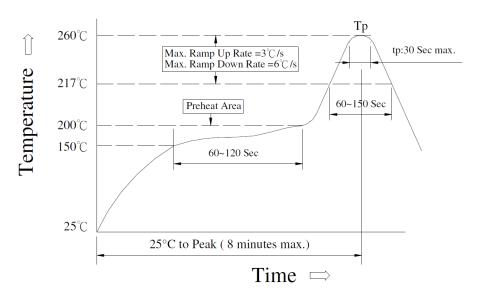
Peel Strength of Top Cover Tape:

The peel speed shall be about 300mm/min.

The peel force of top cover tape shall between 0.1 to 0.7N

Number of Taping:

10,000 pieces / reel


Label Marking:

The following items shall be marked on the reel.

- (1) Type designation
- (2) Quantity
- (3) Manufacturing date code
- (4) Manufacturer's name
- (5) The country of origin

DOCUMENT : SRFC-NH PAGE : 6 REVISION : A4

Recommend Soldering Conditions:

Meet JEDEC-020D

(1) Reflow Soldering Method:

Reflow Soldering	Tp:255 to 260°C Max.30 seconds (Tp)
	217°C 60 to 150 seconds
Pre-Heat	150 to 200℃ 60 to 120 seconds
Time 25℃ to peak temperature	8 minutes max

(2) Soldering Iron Method: 350± 5°C max.3 seconds

DOCUMENT: SRFC-NH PAGE : 7

REVISION : A4

Care Note:

Care note for storage

- (1) Current sensor shall be stored in a environment where temperature and humidity must be controlled (temperature 5 to 40°C, humidity 30 to 80% RH). However, the humidity should be maintained as low as possible.
- (2) Current sensor shall not be stored under direct sunlight.
- (3) Current sensor shall be stored in condition without moisture, dust, any material defect solderability, or hazardous gas (i.e. Chlorination hydrogen, sulfurous acid gas, and sulfuration hydrogen)
- (4) The sensor can be stored for at least one year under the condition mentioned above.

Care note for operating and handling

- (1) It is necessary to protect the edge and protection coat of resistors from mechanical stress.
- (2) Handle with care when printing circuit board (PCB) is divided or fixed on support body, because bending of printing circuit board (PCB) mounting will make mechanical stress for resistors.
- (3) Resistors shall be used with in rated range shown in specification. Especially, if voltage more than specified value will be loaded to resistor, there is a case it will make damage for machine because of temperature rise depending on generating of heat, and increase resistance value or breaks.
- (4) In case that resistor is loaded a rated voltage, it is necessary to confirms temperature of a resistor and to reduce a load power according to load reduction curve, because a temperature rise of a resistor depends on influence of heat from mounting density and neighboring element.
- (5) Observe Limiting element voltage and maximum overload voltage specified in each specification
- (6) If there is possibility that a large voltage (pulse voltage, shock voltage) charge to resistor, it is necessary that operating condition shall be set up before use.

DOCUMENT : SRFC-NH PAGE : 8 REVISION : A4